г. Тамбов, ул. Советская, 118, оф.252
+7 (4752) 71-85-21
Пн-Пт: 8:30 - 17:30
Энергетические комплексы тригенерации на основе технологий переработки отходов

Энергетические комплексы тригенерации на основе технологий переработки отходов

30 Января 2018

Анализ современных тенденций развития отрасли переработки отходов показал, что в данной области необходимы новые технологические решения. Проблема утилизации отходов кроется не только в отсутствии оптимального, безопасного и быстрого способа, но и в его экономической эффективности. Была поставлена задача комплексно подойти к решению проблемы полной утилизации отходов на основе уже апробированных технологий и создать энерготехнологический комплекс малой мощности в автономном и мобильном варианте для практического применения в малых городах и сельском хозяйстве с возможностью получения энергии в режиме тригенерации.

Энергетика, экология и устойчивое развитие

Устойчивое развитие общества в настоящее время невозможно без бережного отношения к природе и сохранения климата на планете. Экологические проблемы энергетики напрямую зависят от технологий производства энергии. В мире истощаются запасы углеводородного сырья. Основные усилия научной общественности направлены на поиск альтернативных путей развития энергетики. Значительное развитие получили возобновляемые источники: ветроэнергетика, солнечная, геотермальная и пр.

Важнейшим фактором, стимулирующим развитие распределенной энергетики как в мире, так и в России, является диверсификация топливно-энергетического баланса за счет увеличения доли местных и альтернативных источников энергетических ресурсов, что влечет за собой более рациональное использование стратегического ресурса – углеводородного сырья. Изменение климата обусловлено сжиганием органического топлива, образованием отходов промышленного и сельскохозяйственного производства, а также бытовой деятельности.

Передовые страны активно идут по пути промышленного освоения нового источника энергии – отходов промышленности, сельского хозяйства и твердых коммунальных отходов (ТКО). Любая промышленная технология, допускающая образование отходов, несовершенна. Задача ученых – разработать современные технологии комплексной переработки уже накопленных отходов и исключить (в крайнем случае резко сократить) образование отходов при проектировании новых производств. Важно, чтобы Россия и в этом направлении не оказалась на обочине мирового прогресса.

В настоящее время существует достаточно большое количество технологий для производства и преобразования энергии, получаемой при переработке органического топлива. Разные страны по-своему подходят к проблеме пере­работки отходов и предлагают свои технологические решения. Но есть и доминирующие технологии. В настоящее время достаточно широко распространено высокотемпературное сжигание. Лидером в этой области является Япония. Но данный метод требует повышенных энергетических затрат, создания дорогостоящих систем очистки, не может быть применим к ряду видов отходов ввиду образования вредных выбросов. Его дальнейшее тиражирование будет затруднено требованиями по сохранению климата.

Основным способом утилизации отходов в странах ЕС является пиролиз: необратимое химическое изменение под действием повышенной температуры без доступа или с ограниченным доступом кислорода, с выделением горючего пиролизного газа (пирогаза). В России нет собственных промышленных технологий переработки отходов, и мы только начали освоение зарубежных технологий в пилотных проектах.

Что делать и в каком направлении ориентировать развитие технологий?

Для переработки отходов требуется энергия. Накопленные отходы, как правило, отнесены на значительное расстояние от объектов генерации. Где брать энергию? Вторая проблема – выбросы. Любая технология сжигания подразумевает наличие выбросов вредных веществ. Кроме того, все равно образуются отходы, требующие захоронения (хоть и в значительно меньшем объеме).

Где выход? Нужны технологии переработки, которые обеспечивают новые повышенные экологические требования, являются универсальными для подавляющего большинства видов отходов, а также не образуют новых отходов, требующих захоронения. Данные технологии должны быть ориентированы на полностью автономную работу комплекса, в котором обеспечение необходимой энергией на собственные нужды осуществляется непосредственно за счет процесса переработки самих отходов.

В настоящее время в развитых странах мира на душу населения производится от 1 до 3 кг ТКО в день. По данным Росприроднадзора, на территории нашей страны под полигоны ТКО занята территория более 50 тыс. га. Ежегодно образуется более 60 млн т ТКО, которые размещаются на санкционированных и несанкционированных свалках. Зарубежные аналитики заявляют, что решение проблемы переработки ТКО зависит от следующих взаимосвязанных аспектов:

  • объемы образования отходов на душу населения постоянно растут;
  • отходы становятся все более опасными для человека и окружающей среды за счет постоянного изменения их состава;
  • население начинает негативно относиться к свалкам;
  • нормы обращения с ТКО постоянно ужесточаются и законодательно регламентируются;
  • усложняется управление отходами;
  • появляются новые технологии переработки ТКО.

Специалисты считают, что проблемы переработки ТКО не могут быть решены только с помощью выбора правильных технологий и программ. Требуется корректная организация процесса, а также учет всех экономических аспектов.

Испытательный образец энергетического комплекса по переработке и обезвреживанию токсичных отходов
мощностью 250 кВт
 

Испытательный образец энергетического комплекса по переработке и обезвреживанию токсичных отходов мощностью 250 кВт

Современные тенденции развития сферы обращения с отходами ведут к увеличению количества перерабатываемых отходов и росту потребности в оборудовании. Требуются как крупные перерабатывающие комплексы, так и установки малой мощности, способные работать автономно и мобильно.

Анализ существующих технических решений в области переработки отходов показал, что для мегаполисов в наибольшей степени подходит проектирование и строительство комплексных заводов, обеспечивающих использование отходов как источника энергии и вторичного сырья. Для средних городов экономически выгодно иметь перерабатывающие комплексы средней мощности, в то время как для малых городов и поселений, сельхозпредприятий выгодно иметь автономные мобильные установки. Кроме того, большие заводы требуют много энергии и подключение к сетям. Автономные установки лишены этого недостатка и, кроме того, обеспечивают мобильность.

Технологии утилизации должны быть комплексными, только так можно получить малую отходность производства, его максимальную экологическую и экономическую целесообразность. При использовании технологии «сортировка + сжигание» количество шлака снижается до 15 % от исходного ТКО, а золы – до 1 %, причем шлак может вовлекаться в промышленную переработку.

Анализ современных тенденций развития отрасли переработки отходов показал, что в данной области необходимы новые технологические решения. Проблема утилизации отходов кроется не только в отсутствии оптимального, безопасного и быстрого способа, но и в его экономической эффективности. Перед исследователями была поставлена задача сформировать проект, в рамках которого можно было бы комплексно подойти к решению проблемы полной утилизации отходов на основе уже апробированных технологий и создать энерготехнологический комплекс малой мощности в автономном и мобильном варианте для практического применения в малых городах и сельском хозяйстве с возможностью получения энергии в режиме тригенерации.

К сожалению, в настоящее время не существует идеального решения, которое позволило бы экономически эффективно и в максимальном объеме утилизировать отходы. Сравнение технологий переработки и утилизации целесообразно проводить на основе сложившейся мировой практики применения так называемых наилучших доступных технологий (НДТ). Из всего набора технологий в итоге были выбраны две основные, наиболее эффективные: пиролиз и гидротермальная деструкция (ГТД). Если пиролиз достаточно хорошо изучен и имеет широкое применение, то ГТД пока не нашла большого практического распространения, хотя обладает рядом преимуществ.

В области технологий пиролиза, помимо имеющихся серийных установок, за основу были приняты разработки и научный задел группы ученых и специалистов под руководством проф. В. К. Иконникова «Российский научный центр “Прикладная химия”» (Санкт-Петербург). Технология переработки ТКО и промышленных отходов после сортировки и исключения хлорсодержащих материалов на основе термобарохимического метода деструкции веществ при температуре 850–1 100 °C отличается высокой надежностью и частично обеспечивает выполнение экологических требований к продуктам сгорания. Предлагается использовать парогазовую среду, полученную при утилизации в пиролизной установке и обладающую высоким потенциалом тепловой энергии, в турбоустановке.

Технология гидротермальной деструкции менее известна и заключается в разложении исходного сырья в водной среде при сверхкритических параметрах под действием температуры и давления на газообразные, жидкие и твердые энергоносители. Различные модификации технологии предполагают использование катализаторов и окислителей. Высокие температура и давление обеспечивают полноту конверсии топлива.

Гидротермальная технология способна перерабатывать в том числе стойкие органические загрязнители (СОЗ), различного рода отравляющие вещества (ОВ) и гербициды. При этом, если исходное сырье высокотоксично, в результате ГТД концентрация вредных веществ в парогазовой смеси находится в пределах допустимых значений. За рубежом данное направление получило название «полигенерирующие системы», то есть энерготехнологические комплексы для получения электроэнергии, тепла и полезных побочных продуктов.

Активная разработка этих систем ведется в Италии, Австрии, Китае, Германии, Южной Корее и других странах. В Австрии работают две установки мощностью 10 МВт, в Швеции сооружается установка мощностью 35 МВт. В Китае имеется несколько таких установок. В России теоретические исследования ведутся в ОИВТ РАН, Институте катализа им. Г. К. Борескова СО РАН, Институте нефтехимии СО РАН, ДВФУ, ОАО ВТИ, РНЦ «Прикладная химия» и др.

В ходе технологического процесса сверхкритические параметры среды позволяют добиться на выходе принципиально новых качественных характеристик выходного продукта. Это в первую очередь высокоэнергетическая парогазовая смесь, которая может служит исходным сырьем для функционирования различного энергетического оборудования: паровых турбин, газопоршневых установок, биогазовых установок, установок для получения синтез-газа и в дальнейшем синтетического моторного топлива и пр.

Энергетический комплекс

На базе предлагаемой технологии можно реализовать ряд энергетических комплексов (ЭК) электрической мощностью от 30 кВт до 1 МВт в зависимости от количества вырабатываемого первичного топлива. Комплектность и вариантность состава ЭК зависит от задач по обеспечению необходимым конечным продуктом (энергия, моторное топливо, газ и пр.). Возможна реализация процесса тригенерации с включением в состав энергетического комплекса реверсивного теплового насоса. Сам ход технологического процесса можно регулировать для изменения параметров выходного продукта или их соотношения в общей массе, исходя из конкретных задач и пожеланий заказчика.

Структурно энерготехнологический комплекс по комплексной переработке отходов будет представлять собой некую композицию. На внешнем уровне будут находиться три группы отходов: промышленные, сельскохозяйственные и коммунальные. Все эти отходы перерабатываются разными технологиями и соответствующим набором оборудования, оптимизированным под конкретный вид отходов и технологию его переработки. На выходе перерабатывающего оборудования имеем разный набор продуктов: газовые, парогазовые, паровоздушные и прочие смеси, причем со своими вредными продуктами.

В центре композиции размещается энергетический комплекс. Это могут быть газовые или паровые турбины, парогазовые и газопоршневые установки, двигатель Стирлинга и прочие. Задача энергетического комплекса – получить от перерабатывающего комплекса его отходы переработки и преобразовать их в энергию для обеспечения собственных нужд и, при их излишках, нужд расположенных поблизости потребителей.

В связи с разнородным составом продуктов переработки отходов между перерабатывающим и энергетическим комплексами располагаются различные устройства преобразования продуктов переработки в исходное сырье для энергетического комплекса. Это могут быть: парогенератор, утилизатор тепла, эжекторные установки и др. Их задача – стабилизировать состав и параметры продуктов переработки для обеспечения устойчивой работы энергетического комплекса.

Не менее важна задача по уменьшению массогабаритных параметров энергетического комплекса. Турбину и электрогенератор необходимо проектировать на высокие обороты до 60 000 об/мин. Серийных изделий данного класса в России нет. Специалисты ООО НПП «Донские технологии» ведут работы в данном направлении с 2012 года. Разработаны экспериментальные образцы паровых микро­турбин и высокоскоростных генераторов на различные параметры: электрической мощностью 5–30 кВт, с числом оборотов 12 000–35 000 об/мин, которые переданы в РНЦ «Прикладная химия» и ООО «Энерготех» (Москва) для отработки совместной работы с установками пиролиза и ГТД.

Главные конструктивные особенности турбины и ее проточной части определяются параметрами пара перед турбиной и давлением за ней, мощностью турбины, частотой вращения ротора. Конструкция ступеней турбины, размеры элементов проточной части зависят от объемного расхода пара. Введение промежуточного перегрева пара существенно увеличивает располагаемый теплоперепад и увеличивает предельную мощность приблизительно на 20 %. Плотность материала рабочих лопаток (титановый сплав) влияет на предельную мощность турбины в зависимости от допустимого напряжения материала.

Электрогенератор представляет собой обратимую вентильно-индукторную высокоскоростную электрическую машину. Данный тип машины технологически проще в изготовлении и позволяет осуществить пуск установки в двигательном режиме с последующим переходом в генераторный режим и выдачу электрической энергии в сеть через устройство преобразования энергии. Для генераторов малой мощности применяются воздушные газодинамические подшипники, изготавливаемые НИУ МЭИ. Для машин до 30 000 об/мин используются керамические подшипники фирмы SKF. Работы в области микротурбостроения возглавляет проф. Н. Н. Ефимов.

Перспектива

В настоящее время на базе данных технологий ведутся работы по созданию опытно-промышленной установки в РНЦ «Прикладная химия». В планах разработчиков завершить работы к открытию Петербургского энергетического форума в 2018 году. В перспективе планируется создание комплекса в контейнерном варианте, обеспечивающем его мобильность и перемещение к объектам эксплуатации на транспортной базе. Технология является прорывной: в России установок данного класса нет.

За рубежом активно ведутся работы по созданию комплексных технологий переработки отходов для получения энергии, призванных снизить зависимость от поставок природного газа. В основном это распространяется на технологии пиролиза. Упор делается на создание мобильных энергетических комплексов, способных автономно работать на удаленных объектах непосредственно в местах утилизации отходов.

Научные аспекты проекта докладывались на XIII Российской конференции по возобновляемым источникам энергии в Санкт-Петербурге, в ноябре 2017 года. Реализация проекта позволит России занять конкурентное положение на мировом рынке высокоэффективных энерготехнологических комплексов и технологий. Проект вносит вклад в решение задач сохранения климата и улучшения экологии.

Источник информации: Государственная информационная система в области энергосбережения и повышения энергетической эффективности

календарь событий
Сентябрь 2018
ПнВтСрЧтПтСбВс
     
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30


У меня есть вопрос
Если у вас есть вопросы
по энергосбережению то вы можете:
Задать вопрос эксперту
или позвонить оператору:+7(4752) 71-85-61
Партнеры